14,979 research outputs found

    Energy Gaps in Graphene Nanoribbons

    Full text link
    Based on a first-principles approach, we present scaling rules for the band gaps of graphene nanoribbons (GNRs) as a function of their widths. The GNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen passivation. Both varieties of ribbons are shown to have band gaps. This differs from the results of simple tight-binding calculations or solutions of the Dirac's equation based on them. Our {\it ab initio} calculations show that the origin of energy gaps for GNRs with armchair shaped edges arises from both quantum confinement and the crucial effect of the edges. For GNRs with zigzag shaped edges, gaps appear because of a staggered sublattice potential on the hexagonal lattice due to edge magnetization. The rich gap structure for ribbons with armchair shaped edges is further obtained analytically including edge effects. These results reproduce our {\it ab initio} calculation results very well

    Modeling of composite beams and plates for static and dynamic analysis

    Get PDF
    The main purpose of this research was to develop a rigorous theory and corresponding computational algorithms for through-the-thickness analysis of composite plates. This type of analysis is needed in order to find the elastic stiffness constants for a plate and to post-process the resulting plate solution in order to find approximate three-dimensional displacement, strain, and stress distributions throughout the plate. This also requires the development of finite deformation plate equations which are compatible with the through-the-thickness analyses. After about one year's work, we settled on the variational-asymptotical method (VAM) as a suitable framework in which to solve these types of problems. VAM was applied to laminated plates with constant thickness in the work of Atilgan and Hodges. The corresponding geometrically nonlinear global deformation analysis of plates was developed by Hodges, Atilgan, and Danielson. A different application of VAM, along with numerical results, was obtained by Hodges, Lee, and Atilgan. An expanded version of this last paper was submitted for publication in the AIAA Journal

    Probabilistic eruption forecasting and the call for an evacuation

    Get PDF
    One of the most critical practical actions to reduce volcanic risk is the evacuation of people from threatened areas during volcanic unrest. Despite its importance, this decision is usually arrived at subjectively by a few individuals, with little quantitative decision support. Here, we propose a possible strategy to integrate a probabilistic scheme for eruption forecasting and cost-benefit analysis, with an application to the call for an evacuation of one of the highest risk volcanoes: Vesuvius. This approach has the following merits. First, it incorporates a decision-analysis framework, expressed in terms of event probability, accounting for all modes of available hazard knowledge. Secondly, it is a scientific tool, based on quantitative and transparent rules that can be tested. Finally, since the quantitative rules are defined during a period of quiescence, it allows prior scrutiny of any scientific input into the model, so minimizing the external stress on scientists during an actual emergency phase. Whilst we specifically report the case of Vesuvius during the MESIMEX exercise, the approach can be generalized to other types of natural catastrophe

    Electron Beam Supercollimation in Graphene Superlattices

    Full text link
    Although electrons and photons are intrinsically different, importing useful concepts in optics to electronics performing similar functions has been actively pursued over the last two decades. In particular, collimation of an electron beam is a long-standing goal. We show that ballistic propagation of an electron beam with virtual no spatial spreading or diffraction, without a waveguide or external magnetic field, can be achieved in graphene under an appropriate class of experimentally feasible one-dimensional external periodic potentials. The novel chiral quasi-one-dimensional metallic state that the charge carriers are in originates from a collapse of the intrinsic helical nature of the charge carriers in graphene owing to the superlattice potential. Beyond providing a new way to constructing chiral one-dimensional states in two dimensions, our findings should be useful in graphene-based electronic devices (e.g., for information processing) utilizing some of the highly developed concepts in optics.Comment: 7 pages, 4 figures (including supporting online material), published online in Nano Letter

    New Generation of Massless Dirac Fermions in Graphene under External Periodic Potentials

    Full text link
    We show that new massless Dirac fermions are generated when a slowly varying periodic potential is applied to graphene. These quasiparticles, generated near the supercell Brillouin zone boundaries with anisotropic group velocity, are different from the original massless Dirac fermions. The quasiparticle wavevector (measured from the new Dirac point), the generalized pseudospin vector, and the group velocity are not collinear. We further show that with an appropriate periodic potential of triangular symmetry, there exists an energy window over which the only available states are these quasiparticles, thus, providing a good system to probe experimentally the new massless Dirac fermions. The required parameters of external potentials are within the realm of laboratory conditions.Comment: 4 pages, 4 figure
    corecore